symmetric partial sum - tradução para russo
Diclib.com
Dicionário ChatGPT
Digite uma palavra ou frase em qualquer idioma 👆
Idioma:

Tradução e análise de palavras por inteligência artificial ChatGPT

Nesta página você pode obter uma análise detalhada de uma palavra ou frase, produzida usando a melhor tecnologia de inteligência artificial até o momento:

  • como a palavra é usada
  • frequência de uso
  • é usado com mais frequência na fala oral ou escrita
  • opções de tradução de palavras
  • exemplos de uso (várias frases com tradução)
  • etimologia

symmetric partial sum - tradução para russo

IN COMMUTATIVE ALGEBRA
Power-sum symmetric polynomial; Power-sum symmetric function; Power sum symmetric function

symmetric partial sum      
симметричная частичная сумма
partial differentiation         
DERIVATIVE OF A FUNCTION OF SEVERAL VARIABLES WITH RESPECT TO ONE VARIABLE, WITH THE OTHERS HELD CONSTANT
Partial Derivatives; Partial derivatives; Partial differentiation; Partial derivation; Mixed partial derivatives; Mixed derivatives; Partial Derivative; Mixed partial derivative; Partial differential; Partial symbol; Partial differentiation; Del (∂); Cross derivative

математика

определение частной производной

symmetric cryptography         
ALGORITHM
Symmetric Algorithms; Symmetric key; Symmetric encryption; Symmetric key cryptography; Symmetric cypher; Shared key; Symmetric cipher; Symmetric-key cipher; Symmetric key algorithms; Symmetric cryptography; Private-key cryptography; Symmetric key encryption; Symmetric key algorithm; Reciprocal cipher; Reciprocal encipherment; Private key cryptography; Symmetric-key encryption algorithm; Symmetric-key cryptography; Private-key; Symmetric algorithm; Private-key encryption; Symmetrical encryption

общая лексика

криптография с симметричными шифрами

использует один и тот же секретный ключ для операций шифрования и дешифрования

Смотрите также

symmetric cipher

Definição

Антагонистические игры
(матем.)

понятие теории игр (см. Игр теория). А. и. - игры, в которых участвуют два игрока (обычно обозначаемые I и II) с противоположными интересами. Для А. и. характерно, что выигрыш одного игрока равен проигрышу другого и наоборот, поэтому совместные действия игроков, их переговоры и соглашения лишены смысла. Большинство азартных и спортивных игр с двумя участниками (командами) можно рассматривать как А. и. Принятие решений в условиях неопределённости, в том числе принятие статистических решений, также можно интерпретировать как А. и. Определяются А. и. заданием множеств стратегий игроков и выигрышей игрока I в каждой ситуации, состоящей в выборе игроками своих стратегий. Таким образом, формально А. и. есть тройка ‹А, В, Н›, в которой А и В - множества стратегий игроков, а Н (а, b) - вещественная функция (функция выигрыша) от пар (а, b), где а A, b В. Игрок I, выбирая а, стремится максимизировать Н(а, b), а игрок II, выбирая b, - минимизировать Н (а, b). А. и. с конечными множествами стратегий игроков называются матричными играми (См. Матричные игры).

Основой целесообразного поведения игроков в А. и. считается принцип Минимакса. Следуя ему, I гарантирует себе выигрыш

точно так же II может не дать I больше, чем

Если эти "минимаксы" равны, то их общее значение называется значением игры, а стратегии, на которых достигаются внешние экстремумы, - оптимальными стратегиями игроков. Если "минимаксы" различны, то игрокам следует применять смешанные стратегии, т. е. выбирать свои первоначальные ("чистые") стратегии случайным образом с определёнными вероятностями. В этом случае значение функции выигрыша становится случайной величиной, а её Математическое ожидание принимается за выигрыш игрока I (соответственно, за проигрыш II). В играх против природы оптимальную смешанную стратегию природы можно принимать как наименее благоприятное априорное распределение вероятностей её состояний. В А. и. игроки, используя свои оптимальные стратегии, ожидают получения (например, в среднем, если игра повторяется многократно) вполне определённых выигрышей. На этом основан рекуррентный подход к динамическим играм в тех случаях, когда они сводятся к последовательностям А. и., решения которых можно найти непосредственно (например, если эти А. и. являются матричными). А. и. составляют класс игр, в которых принципиальные основы поведения игроков достаточно ясны. Поэтому всякий анализ более общих игр при помощи А. и. полезен для теории. Пример такого анализа даёт классическая Кооперативная теория игр, изучающая общие бескоалиционные игры через системы А. и. каждой из коалиций игроков против коалиции, состоящей из всех остальных игроков.

Лит.: Бесконечные антагонистические игры, под ред. Н. Н. Воробьева, М., 1963.

Н. Н. Воробьев.

Wikipédia

Power sum symmetric polynomial

In mathematics, specifically in commutative algebra, the power sum symmetric polynomials are a type of basic building block for symmetric polynomials, in the sense that every symmetric polynomial with rational coefficients can be expressed as a sum and difference of products of power sum symmetric polynomials with rational coefficients. However, not every symmetric polynomial with integral coefficients is generated by integral combinations of products of power-sum polynomials: they are a generating set over the rationals, but not over the integers.

Como se diz symmetric partial sum em Russo? Tradução de &#39symmetric partial sum&#39 em Russo